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A B S T R A C T 

  Decision-making models such as Analytical Hierarchy Process (AHP), Weighted Decision Matrix 

(WDM), Pugh Matrix and the likes have been able to assist in the decision process considering the 

objectives of each evaluation criteria in the alternatives. However, these models need to consider the 

qualitative and subjective nature of the design features. In order to reduce the unbalanced scale of 

judgment and the uncertainty associated with the crisp information in the decision process, fuzzified 

and hybridized models are necessary. Existing hybridized decision models applied for machine 

concept selection deploy several design features and sub-features at the conceptual product design, 

which thus make the decision making process to be tedious. In light of this, this article presents a 

hybridized decision-making model, which harness the comparative strength and computational 

integrity of fuzzy pairwise comparison matrix and fuzzy weighted average, to numerically analyse a 

reasonable amount of machine design features, thereby making decision making process less tedious. 

Design for reconfigurability and functionality which are peculiar to reconfigurable machines was 

introduced using a Reconfigurable Assembly Fixture (RAF) as a case study while other design 

features related to design concept evaluation were grouped under design for X. The result of the 

hybridized model shows that, concept three is the optimal design from four sets of designs. This is 

compared to previous publication using the RAF design concepts with different design features and 

sub-features. The comparison indicates that there is a close range in the final values of the designs 

due to the inclusion of several sub-features in the decision process which were not used in the 

previous study.  
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1. Introduction 

The emergence of reconfigurable manufacturing paradigm due to the dynamic nature of the 

market has called for the extensive design of equipment and machines. Manufacturers are faced 

with the challenge of demands for customized designs that are having shorter life cycle and may 
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not have a larger share of the competitive market [1, 2]. In order to proffer solution to the demand 

for customization in design, machines serving a particular function are designed around the same 

part family in order to be suitable for varieties of parts. Given this, the design of reconfigurable 

machines has emerged in recent times to serve as enabling equipment in a Reconfigurable 

Manufacturing System (RMS) [3]. An example of this reconfigurable machine is a 

Reconfigurable Assembly Fixture (RAF) that is primarily designed as aiding equipment in a 

Reconfigurable Assembly System (RAS) [4, 5]. An RAF is designed to uniquely locate and 

position a workpiece while other assembly processes are carried out on the workpiece [3, 6].  

1.1. Decision Making in Engineering Design 

Decision-making in the engineering design process (Figure 1) for selection of optimal design 

concept usually involves the application of design for X tools to different design alternatives in 

order to select the optimal design [7, 8]. These features or tools include design for manufacturing, 

design for assembly and disassembly, design for reliability, design for maintainability, design for 

serviceability, design for environment, and design for life cycle cost [9]. These tools have been 

implemented in decision-making using different multicriteria decision-making tools. They have 

provided improved decision-making processes to the selection of optimal design alternative at 

the conceptual phase of designs [10, 11]. However, the design of the reconfigurable machines 

requires the introduction of more features to cater to their agile and changeability characteristics. 

Given this, the design for reconfigurability and functionality is considered as peculiar features to 

reconfigurable machines in order to provide a robust and systematic approach to the decision on 

the optimal design of reconfigurable machines.   

The design for reconfigurability and functionality can be disintegrated into sub-features in order 

to further improve the decision process. An excellent method to analyze the performance of a 

reconfigurable machine in terms of reconfigurability is to consider the characteristics of 

reconfigurable manufacturing principle as sub-features. These characteristics are modularity, 

integrability, customization, convertibility, scalability, and diagnosability [12]. The design for 

functionality can be considered from the performance of the design in terms of the operational 

requirements. It highlights some performance index as sub-features that are related to the purpose 

for which the reconfigurable machine is designed. It is worthwhile to state that these indices 

differ for different machines and this makes it a task for the design engineer to identify and 

analyze performance indices that can be accrued to the optimal design. The contributions of the 

sub-features to the performance of the main design features and the relative importance of the 

main design features in the optimal design are needed to be determined in the form of weights 

because they are needed in the decision making on optimal design [13, 14]. 
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Figure 1. Decision-making in the engineering design process. 
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1.2. Approaches to Decision Making 

Multicriteria Decision Making Analysis (MDMA) is a prominent tool that is applied in different 

fields, such as engineering, science, and management, to facilitate decision making. The MDMA 

models are classified into Multi-Objective Decision Making (MODM) analysis and Multi-

Attribute Decision Making (MADM) analysis [15]. The MODM models are usually employed 

when the details of sub-criteria are given less consideration in the decision process. Examples of 

the MODM models are the weighted decision matrix (WDM), Technique for Order Performance 

by Similarity to Ideal Solutions (TOPSIS), and Analytic Hierarchy Process (AHP). A general 

form of the AHP is the Analytic Network Process (ANP) which considers the interdependence 

among the sub-criteria and alternatives using a system of pairwise comparison matrices to obtain 

weights for the decision criteria and sub-criteria. However, when it is required to consider various 

dimensions of the design features and their sub-features, the MADM models are applied. MADM 

models are developed by fuzzifying and hybridizing the MODM models in order to produce an 

optimised decision-making process [16-18]. 

Selection of optimal conceptual design from a set of alternative designs usually requires that all 

necessary design features and their sub-features are considered. The primary goal of the design 

engineer at the concept selection stage is to select a design that embodies most of the design 

features in order to satisfy the users' requirement. Considering the fact that these sub-features 

have different units and dimensions with interrelated functions, there is a tendency of 

encountering bias judgement in quantifying these features during the comparison. The design 

engineer tends to avoid bias and ambiguity in the decision process by applying the MADM 

models using fuzzy sets and linguistic terms. It provides better results than the MODM models, 

which involves apportioning of crisp values in the decision process. Also, hybridizing two or 

more MADM models will enhance the computational integrity of the decision process because 

each of the MADM models has their strengths and weaknesses. Hence the hybridization will 

harness the strengths of the models and develop a new framework for integration of the models. 

Several efforts has been made in the application of hybridized models to decision making process 

[29-31]. There is a need to continually apply these hybridized models for decision making in the 

design process because of the importance of design concept selection. In essence, a good way to 

identify the optimal design is applying these hybridized models by considering several design 

features and sub-features that are applicable to the optimal design [7, 32]. This will ensure that 

all design features and sub-features have been considered before choosing an optimal design for 

fabrication. However, the application of numerous design features with various sub-features in 

[37] makes the decision process tedious, hence design engineers need to continually seek for a 

way to analyse the design features and sub-features such that they are not numerous but 

encompassing. Also, from another perspective, the comparison of hybridized models in order to 

know the best hybridized model will be another topic of interest that will not be addressed in this 

study because different hybridized models harnesses the computational strengths of two or more 

MADM models [18, 37].     
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In order to achieve effective operation of RMS, various efforts have been made by researchers to 

evaluate and select optimal system configuration using various decision-making models [19-21]. 

Gupta et al. [22] proposed a decision model for the selection of optimal system configuration of 

machine types in order to improve the efficiency of a reconfigurable manufacturing system. The 

criteria of the decision hierarchy considered were productivity, convertibility, scalability, and 

cost. The weights of these criteria were determined by Shannon’s entropy and six alternative 

system configurations were compared in pairwise comparison matrices whose principal 

eigenvectors represent the relative importance of the configurations. Results obtained for the 

system’s configuration are in terms of expected production, minimum increment for 

convertibility, cost per increment capacity, and initial investment. Similar to this approach is the 

application of grey relational grade method for evaluation of different system configuration in 

order to have a system that is sensitive to small deviations in multiple control measures [23]. In 

this case, four alternative configurations are compared using system operational parameters such 

as lot size and customer’s and orders priority rule. The decision model provided four scenarios 

from the grey relational analysis. Each scenario had a different ranking of the configurations but 

indicated the same configuration as optimal.  

Also, from another point of view, a reconfiguration decision making based on game theory 

algorithm using the Gale-Shapely model was proposed by Renna [24]. The reconfigurable 

machines, in this case, are divided into men and women set base on their workload and capability 

of the machines to perform base technical operation or perform with auxiliary modules. The 

model allocates technical operations to machines in the system in order to allow reconfiguration 

of the reconfigurable machines. Results obtained from the simulation indicated reduction in 

average workload and job shop time, however, the bottleneck shiftiness value increases. More 

also, in line with the work of Rehman [23] and Gupta et al. [22], a multi-attribute decision-making 

method based on VIKOR was proposed by Yi et al. [25] to evaluate design schemes of 

reconfigurable machine tools. Three evaluation indicators were established based on module 

similarity between the reconfigurable machine tool and the prototype machine tool to evaluate 

five design schemes. These indicators are in the form of modules which are chain module, 

interface complexity module, and reconfiguration cost module. The proposed decision model 

was compared with Simple Average Weighting (SAW) and TOPSIS, and the three decision 

models indicate the same optimal design scheme.   

To this end, the application of decision models in reconfigurable manufacturing systems has 

gained attention selecting optimal system configuration and evaluation of design schemes of 

reconfigurable machine tools, but the consideration of these decision models in the selection of 

the optimal design of other reconfigurable machines aside from the reconfigurable machines tools 

requires attention. Hence, this article is proposing the application of a MADM model to identify 

the optimal design of a RAF. The design of MADM models for the decision on optimal design 

is an area of research that needs attention because the implication of not having an optimal design 

before engaging in fabrication is threatening to the manufacturer. Hence, this article suggests 
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that, aside from the design for X tools that are generally known as design features, the design for 

reconfigurability and functionality can be integrated to decision making in the engineering design 

process particularly for the development of reconfigurable machines. In order to implement this, 

a Synthetic Extent Weighted Average (SEWA) is developed based on left and right score of a 

Triangular Fuzzy Number (TFN) and using the reconfigurable assembly fixture as a case study.    

2. Mathematical Formulation for the SEWA  

Consider k number of design alternatives (
ak

D ) that are selected for decision making with a 

mixed scenario of m number of design features (
fm

d ) and n number of sub-features (
fn

S ) allotted 

to each design features. In order to compensate for the multifarious dimensions of the sub-

features and design features, it is necessary to assign linguistic terms (Table 1) using an interval-

valued fuzzy set with fuzzy number P using a TFN which membership function 
p
(y)  is 

contained in [0 1] and defined as Eq. (1) (Figure 2) [26, 27]. 

 

 

1 u
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v u v u
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Figure 2. Membership function for a TFN. 
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characteristics of all the concepts would have been considered during the pairwise comparison 

process [1, 28]. 

Table 1. TFNs and linguistics terms for pairwise matrices and weighted average. 

 

The motive for applying the fuzzified pairwise comparison matrix is to determine the weights of 

the design features and sub-features from the Fuzzy Synthetic Evaluation (FSE) with respect to 

their relative importance in the optimal design. The pairwise comparisons for the design features 

(Eq. (2)) and sub-features (Eq. (3)) are obtained from judgement matrix of the form  j

gi
C c  

which can be presented as [29] 

1 2 s

fg1 fg1 fg1

1 2 s

fg2 fg2 g2

f

1 2 s

fgk fgk fgk

d d .......... d

d d .......... d
D

              

d d .......... d

 
 
 
 
 
 
 
 

, (2) 

1 2 s

fg1 fg1 fg1

1 2 s

fg2 fg2 fg2

f

1 2 s

fgk fgk fgk

s s .......... s

s s .......... s
S

              

s s ...........s

 
 
 
 
 
 
 
 

. (3) 

Where
ij

c is a TFN that can be represented by  ij ij ij
u   v   w  as presented in Eq. (1). For i=1, 2, 3…. 

k, j=1, 2, 3……s, such that, when i = j, then  
j

gi
c 1  1  1 . The value of the FSE is required from the 

fuzzy pairwise comparison matrices for all the design features and the sub-features. Since the 

FSEs represents the weights, hence the weights of the relative importance of the design features 

(
f

Wd ) and sub-features (
f

WS ) is defined as [30, 31] 

1
s k s

s s

f fgk fgkm
j 1 i 1 j 1

Wd d d



  

 
  

 
  , (4) 

Pairwise Matrix  Weighted Average  

Linguistic terms for rating of 

relative significance of design 

features in the optimal design 

Triangular 

fuzzy scale 

membership 

function 

Crisp 

value of 

ranking 

Linguistic terms for 

ranking of availability of 

sub-features in the design 

concepts 

Triangular fuzzy 

scale 

membership 

function 

Crisp 

value of 

rating 

Equally Important (EQI) 1    1    1  1 Very High (VH) 2.5  3  3.5  5 

Weakly Important (WEI) 1   1.5   2  2 High (H) 2   2.5   3  4 

Essentially Important (ESI) 1.5  2  2.5  3 Medium (M) 1.5  2  2.5  3 

Very Strong Important (VSI) 2   2.5   3  4 Low (L) 1   1.5   2  2 

Absolutely Important (ABI) 2.5  3  3.5  5 Very Low (VL) 0.5  1  1.5  1 
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1
s k s

s s

fn fgk fgkm
j 1 i 1 j 1

WS s s .



  

 
  

 
   (5) 

Assigning TFNs to the availability of the sub-features in the alternative design concepts based on 

the parts analysis will produce a comparison matrix which aggregate will form a basis for the 

comparison matrix of the design alternatives. A matrix of the aggregate TFNs for the design 

alternatives from all the sub-features for m number of design features can be represented by [32] 

1

2

n

a1 a2 ak

1 2 k

f sf1 sf1 sf1

1 2 k

f sf 2 sf 2 sf 2

1 2 k
f sfn sfn sfn

                 Design Alternatives

               D     D     .......... D  

WS b b .......... b

WS b b .......... b
*

WS b b .......... b

 
 
 
 
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 

ak Agg
D                          

 
 
 
 
 
  
 

. (6) 

Where 
k

sfn
b is a TFN that is equal to the product of the weight of a sub-feature and the availability 

of the sub-feature in a design alternative. The aggregate of the design concepts considering all 

the sub-features in a design feature (
ak Agg

D ) can be obtained from Eq. (7).  

n

n n
k

ak Sf sfnAgg
n 1

D W *b




 
  . (7) 

All the aggregates are harnessed to form the decision matrix of the form 

f1 f1 fm
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1 2

ak ak akAgg k Agg k
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
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m
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 
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. (8) 

In order to normalise the decision matrix, consider a fuzzy number 
ij ij ij ij

y (u   v   w )  for 

 i 1.....n  j 1.....m   the normalisation process can be presented as shown in Eqs. (9)-(11) [26, 33]. 

       ij ij ij ijN N N N
y u   v   w 

 
, (9) 

 
Min Min Min

ij j ij j ij j

ij bMax Max MaxN

Min Min Min

u u v u w u
y ,   ,  ,    i 1,......n;   j

   
   
    

, (10) 
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 
Max Max Max

ij j ij j ij j

ij cMax Max MaxN

Min Min Min

w w v w u w
y ,   ,  ,    i 1,......n;   j

   
   
    

. (11) 

Where
Min Max

j ij j ij
u Min u  and w Max w  for i 1,......n   ; 

Max Max Min

Min j j
w u   . Also, 

b c
 and    are sets 

of benefit and cost attributes, respectively. The left and right scores of the normalised decision 

matrix and the weighted priority are important for computations of the fuzzy weighted average. 

It is necessary to present an analysis on the determination of left and right score from the TFNs 

which can be obtained from Eqs. (12)-(13) [34, 35].   

 
 
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ij N

S ij

ij ijN N

v
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 
 
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S ij

ij ijN N

w
R

1 w v


 
. (13) 

Applying Eqs. (12)-(13) to the normalised form of Eq. (8), two matrices that include intervals of 

the left and right score can be constructed for the normalised decision matrix and the weights of 

the design features. The value for the weighted average of each design alternative is also 

obtainable in the form of the intervals of the left and right scores. For ease of analysis let 
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Since the components for each of the design alternative obtained in Eq. (16) is a function of the 

intervals of the left and right scores, then the FWA can be considered as a lower and upper bound 

of a fractional programming model. Besides, since the FWA is a monotonically increasing 

function of 
ij

d which reaches its minimum and maximum at  ij S ij
d L and  ij S ij

d R , 

respectively then the pair of fractional programming model can be presented as 

  
   

n

j S ij
L j 1

i s j sn j j

j
j 1

w * L

Min  Subject to L w R ,   j 1.....n

w





 
 
     
 
 
 




, (18) 

  
   

n

j S ij
U j 1

i s j sn j j

j
j 1

w * R

Max  Subject to L w R ,   j 1.....n

w





 
 
     
 
 
 




. (19) 

Eqs. (18)-(19) can be transformed into a linear programming model using transportation equations 

as presented in Eqs. (20)-(21).  

n

j
j 1

1
z

w





. 

(20) 

j j
t z*w      j 1.......n  . (21) 

    

     

n n
L

i j S jij
j 1 j 1

S j Sij ij

Min t * L   subject to t 1

      z * L t z * L ,   j 1.....n.

 

  

  

 
 (22) 

    

     

n n
U

i j S jij
j 1 j 1

S j Sij ij

Max t * R   subject to t 1

     z * L t z * L ,   j 1.....n.

 

  

  

 
 (23) 

An interval    
L U

i i
,    

 
 is created from Eqs. (22)- (23) for each design alternative whose 

average value (
i avg
  ) will provide the weight for each design alternative as presented in Eq. (24) 

[26]. 

 
   

L U

i i

i avg

 

2

  
  . (24) 

In order to simplify the analysis, a framework for the fuzzified SEWA and its application to the 

identification of optimal design concept is presented in Figure 3. It is evident from Figure 3 that 

the hybridized model utilizes the comparative strength of the fuzzified analytic network process 

by obtaining weights of the design features and sub-features from the fuzzified pairwise 

comparison matrix. These weights are obtained from the fuzzified pairwise comparison matrix 
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of the design features and sub-features using the fuzzy synthetic extent value expression, which 

may be analogous to the local weights obtained from priority vectors when dealing with crisp 

values in the ANP. Also, considering the multi-dimensional nature and units of the design 

features and their sub-features, apportioning of crisp values in the pairwise comparison matrix 

may not be suitable as using fuzzy sets and linguistic terms. The hybridized model surpasses 

from the conventional AHP model by further exploiting the computational strength of the fuzzy 

weighted average based on left and right scores in order to aggregate the availability of the sub-

features in the design alternatives and consider the weights of the design features in determining 

the optimal design. 

Figure 3. Framework for identifying optimal design via fuzzified synthetic extent weighted average.  
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3. Application to the Design of RAF 

The SEWA can be implemented using the RAF. Four design alternatives of the RAF are 

presented in Figure 4. Details of the RAF designs are obtainable from [36]. The sub-features of 

the three design features are also presented in Figure 3. Pairwise comparison matrices for the sub-

features and design features are shown in Tables (2)-(5). Due to a large number of sub-features, 

the TFNs values cannot fit in the columns, hence the symbols from Table 1 are used to represent 

the TFNs. As stated earlier, the sub-features of design for functionality are peculiar to the 

required performance of the reconfigurable machine. They are associated with the RAF in terms 

of the morphology of locators, position synchronization and others as specified in Figure 4. The 

FSE is obtained for the design features and sub-features using Eqs. (4)-(5), respectively. Table 6 

presents the TFNs estimated from all the comparison matrices for the sub-features and design 

features. 

Table 2. Comparison matrix for sub-features of DfF. 

Functionality F 

 DW ML SL PA CW SW AF CG WS 

DW EQI ESI WEI VSI WEI WEI ESI VSI WEI 

ML ESI-1 EQI WEI WEI VSI VSI ABI ESI WEI-1 

SL WEI-1 WEI-1 EQI ESI ESI ESI-1 WEI-1 ESI WEI 

PA VSI-1 WEI-1 ESI-1 EQI ABI ESI-1 WEI-1 ESI-1 ABI 

CW WEI-1 VSI-1 ESI-1 ABI-1 EQI ESI-1 WEI WEI ABI 

SW WEI-1 VSI-1 ESI ESI ESI EQI VSI WEI ABI 

AF ESI-1 ABI-1 WEI WEI WEI-1 VSI-1 EQI ESI ESI-1 

CG VSI-1 ESI-1 ESI-1 ESI WEI-1 WEI-1 ESI-1 EQI VSI 

WS WEI-1 WEI WEI-1 ABI-1 ABI-1 ABI-1 ESI VSI-1 EQI 

 

Table 3. Comparison matrix for sub-features of DfR. 

Reconfigurability R 

 MO IN CU CO SC DI 

MO EQI ESI VSI WEI ABI WEI 

IN ESI-1 EQI WEI ESI WEI VSI 

CU VSI-1 WEI-1 EQI WEI ESI VSI 

CO WEI-1 ESI-1 WEI-1 EQI VSI ESI 

SC ABI-1 WEI-1 ESI-1 VSI-1 EQI ABI 

DI WEI-1 VSI-1 VSI-1 ESI-1 ABI-1 EQI 
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Figure 4. Decision tree for evaluation of the RAF. 
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Table 4. Comparison matrix for sub-features of DfX. 

Design for X 

 DfM DfAD DfRe DfMt DfS DfLc DfE 

DfM EQI WEI ESI ESI VSI ABI ESI 

DfAD WEI-1 EQI ESI WEI WEI VSI VSI 

DfRe ESI-1 ESI-1 EQI WEI-1 WEI-1 WEI ESI 

DfMt ESI-1 WEI-1 WEI EQI WEI ESI WEI 

DfS VSI-1 WEI-1 WEI WEI-1 EQI WEI VSI 

DfLc ABI-1 VSI-1 WEI-1 ESI-1 WEI-1 EQI ESI 

DfE ESI-1 VSI-1 ESI-1 WEI-1 VSI-1 ESI-1 EQI 

 

 
Table 5. Comparison matrix for design features. 

Design Features 

 DfX DfR DfF 

DfX EQI ESI-1 WEI-1 
DfR ESI EQI WEI 
DfF WEI WEI-1 EQI 
FSE 0.16   0.22   0.34 0.29   0.46    0.70 0.21   0.32   0.51 

 

 

Table 6. Values of FSE for the sub-features. 

Functionality Reconfigurability Design for X 
Sub-

Features 
FSE 

Sub 
Features 

FSE 
Sub-

Features 
FSE 

DW 0.095   0.158   0.252 MO 0.16   0.25   0.38 DfM 0.15   0.24   0.37 
ML 0.094   0.149   0.236 IN 0.12   0.20   0.31  DfAD 0.12   0.20   0.32 
SL 0.066   0.109   0.179 CU 0.11   0.18   0.25 DfRe 0.07   0.12   0.19 
PA 0.068   0.101   0.158 CO 0.12   0.18   0.28 DfMt 0.09   0.15   0.24 
CW 0.059   0.093   0.148 SC 0.09   0.13   0.19 DfS 0.09   0.14   0.23 
SW 0.094   0.149   0.234 DI 0.05   0.07   0.11 DfLc 0.06   0.09   0.15 
AF 0.051   0.083   0.135   DfE 0.05   0.07   0.11 
CG 0.056   0.086   0.139     
WS 0.045   0.071   0.116     

 

The next stage is to assess the design concepts based on these sub-features considering parts 

analysis and morphology of the component in each of the design alternatives. An assessment of 

the design alternatives considering the sub-features is presented in Tables (7)-(9). 

Table 7. Assessing design concepts based on sub-features of reconfigurability. 

Reconfigurability (R) 
Design Alternatives 

Concept 1 Concept 2 Concept 3 Concept 4 

MO (0.16   0.25   0.38) 1.5  2  2.5  1   1.5   2  2   2.5   3  1   1.5   2  

IN (0.12   0.20   0.31)  2   2.5   3  2   2.5   3  2.5  3  3.5  2   2.5   3  

CU (0.11   0.18   0.25) 1.5  2  2.5  2   2.5   3  1.5  2  2.5  1.5  2  2.5  

CO (0.12   0.18   0.28) 1.5  2  2.5  1.5  2  2.5  2   2.5   3  2   2.5   3  

SC (0.09   0.13   0.19) 1.5  2  2.5  1.5  2  2.5  1.5  2  2.5  1.5  2  2.5  

DI (0.05   0.07   0.11) 2   2.5   3  2   2.5   3  2   2.5   3  2   2.5   3  

Cumulative TFN 1.07  2.13  4.03  1.04  2.10  3.96  1.27  2.45  4.51 1.05  2.10  3.98  
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Table 8. Assessing design concepts based on sub-features of functionality. 

Functionality (F) 
Design Alternatives 

Concept 1 Concept 2 Concept 3 Concept 4 

DW (0.095  0.158  0.252) 1.5  2  2.5  2   2.5   3  2   2.5   3  2   2.5   3  

ML (0.094  0.149  0.236) 1.5  2  2.5  1.5  2  2.5  2   2.5   3  1.5  2  2.5  

SL (0.066  0.109  0.179) 1.5  2  2.5  1   1.5   2  2   2.5   3  1.5  2  2.5  

PA (0.068  0.101  0.158) 1.5  2  2.5  1   1.5   2  2.5  3  3.5  2   2.5   3  

CW (0.059  0.093  0.148) 2   2.5   3  1.5  2  2.5  2   2.5   3  2   2.5   3  

SW (0.094  0.149  0.234) 2   2.5   3  1   1.5   2  1.5  2  2.5  2   2.5   3  

AF (0.051  0.083  0.135) 1   1.5   2  1   1.5   2  2   2.5   3  2   2.5   3  

CG (0.056  0.086  0.139) 2   2.5   3  2   2.5   3  1   1.5   2  1.5  2  2.5  

WS (0.045  0.071  0.116) 1.5  2  2.5  1.5  2  2.5  2.5  3  3.5  2   2.5   3  

Cumulative TFN 1.02  2.12  4.18  0.88  1.90  3.83  1.21  2.43  4.67  1.14  2.33  4.51 

 

Table 9. Assessing design concepts based on sub-features of design for X. 

Design for X (DfX) 
Design Alternatives 

Concept 1 Concept 2 Concept 3 Concept 4 

DfM (0.15   0.24   0.37) 2   2.5   3  2.5  3  3.5  1.5  2  2.5  2   2.5   3  

DfAD (0.12   0.20   0.32)  2.5  3  3.5  2.5  3  3.5  2   2.5   3  2.5  3  3.5  

DfRe (0.07   0.12   0.19) 2   2.5   3  1.5  2  2.5  2.5  3  3.5  2   2.5   3  

DfMt (0.09   0.15   0.24) 2   2.5   3  2   2.5   3  2   2.5   3  2   2.5   3  

DfS (0.09   0.14   0.23) 1.5  2  2.5  2   2.5   3  1.5  2  2.5  2   2.5   3  

DfLc (0.06   0.09   0.15) 2   2.5   3  1.5  2  2.5  2.5  3  3.5  1.5  2  2.5  

DfE (0.05   0.07   0.11) 1   1.5   2  1   1.5   2  1   1.5   2  1   1.5   2  

Cumulative TFN 1.21  2.46  4.77  1.26  2.55  4.90  1.13  2.32  4.55  11.23  2.48  4.81  

 

The fuzzified decision matrix for the design alternatives can be obtained from the cumulative 

TFNs obtained from the assessments in Tables (7)-(9). The weights of the design features are also 

presented together with the decision matrix using the FSEs of the comparison matrix for the 

design alternatives. Table 10 presents the decision matrix. 

Table 10. Fuzzified decision matrix. 

 

 

 

 

 

The TFNs of the fuzzified decision matrix is normalized in order to ensure that they are weighted 

in range [0   1] as presented in Table 11. In order to estimate the intervals of the TFNs, they will 

be converted to left and right scores applying Eqs. (12)-(13) as shown in Table 12. By applying 

the transportation model in Eqs. (20)-(21), the weights of the design features are normalized in 

Design  

Alternatives 

Design Features 

DfX 

(0.16   0.22   0.34) 

DfR 

(0.29   0.46    0.70) 

DfF 

(0.21   0.32   0.51) 

Concept 1 1.21  2.46  4.77  1.07  2.13  4.03  1.02  2.12  4.18  

Concept 2 1.26  2.55  4.90  1.04  2.10  3.96  0.88  1.90  3.83  

Concept 3 1.13  2.32  4.55  1.27  2.45  4.51 1.21   2.43  4.67  

Concept 4 1.23  2.48  4.81  1.05  2.10  3.98  1.14  2.33  4.51 
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order to determine their contributions to the determination of intervals for the design alternatives 

using Eqs. (22)-(23). The weighted average for each of the design alternatives is obtained from 

this interval. A ranking of the design concept is done based on the values of this weighted 

average. Table 12 presents the normalized left and right scores of the weights for the design 

features, weighted interval, and average for each design alternative and ranking.    

Table 11. Normalized fuzzy decision matrix. 

 

 

 

 

 

 

 
Table 12. Weighted average computation and ranking of design alternatives. 

 

4. Conclusions  

Considering the final values of the weighted average, concept three appears to be the optimal 

design of the RAF. The determination of weights of sub-features and design features from the 

synthetic extent of the pairwise comparison matrix created a means of showing the connection 

between the sub-features and design features and their contributions in the optimal design of 

RAF. This method supports the saaty’s theory by ensuring that a design concept is not over scored 

compared to others as it can be observed in the final values of the concepts that the differences 

between the final values are not unnecessarily large. This result can be compared with the results 

obtained from Olabanji and Mpofu [14] using WDM and AHP on the same RAF designs where 

the final values between the design alternatives are high thus creating a large margin between the 

optimal design and other design alternatives. However, the lagre margin in [14] does not depict 

that the AHP overscores the optimal design. The margin is due to the choice of the design features 

which have no sub-features in the previous study. Hence, there is an implication that the strengths 

Design  

Alternatives 

Design Features 

DfX 

(0.16   0.22   0.34) 

DfR 

(0.29   0.46    0.70) 

DfF 

(0.21   0.32   0.51) 

Concept 1 0.02  0.35  0.97  0.01  0.31  0.86  0.04  0.33  0.87  

Concept 2 0.03  0.38  1.00  0.00  0.30  0.84  0.00  0.27  0.78  

Concept 3 0.00  0.32  0.91 0.06  0.40  1.00  0.09   0.41  1.00  

Concept 4 0.03  0.36  0.98  0.00  0.30  0.84  0.07  0.38  0.96  

Design  

Alternatives 

Design Features 

Weighted 

Interval 

Weighted 

Average 
Ranking 

DfX DfR DfF 

(0.21   0.30)  (0.39   0.56)  (0.29   0.43) 

Normalized Weight of Design Features 

[0.23   0.23] [0.44   0.44] [0.33   0.33] 

Concept 1 0.27  0.60  0.24  0.56  0.25  0.56  0.25   0.57 0.41 3rd  

Concept 2 0.28  0.62  0.23  0.55  0.21  0.52  0.24   0.55 0.39 4th  

Concept 3 0.24  0.57  0.30  0.63  0.31  0.63 0.29   0.61 0.45 1st  

Concept 4 0.27  0.60  0.23  0.55  0.29  0.61  0.26   0.58 0.42 2nd  
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of all design alternatives have been considered in the decision process. The decision approach 

used in this article appears to be a robust computational process because normalizing the weights 

of the design features from the left and right score forced the weighted intervals of the design 

alternatives to be in the desired range. It can be observed from the final values of the design 

features that appear to be equal after normalization by applying the transportation equation. The 

introduction of design for reconfigurability and functionality assisted in harnessing the detail 

performance of the design alternatives compared with the conventional design for X tools/sub-

features because the design for reconfigurability and functionality speaks to the details of the 

RAF operations.  

In essence, the role of design concept evaluation in the design of a reconfigurable machine is 

crucial because it ensures that an appropriate and efficient design is selected for detailed design 

and fabrication. Aside the fact that design concept evaluation assists in the selection of the 

optimal design, it also assists in ensuring that a holistic approach is given to all design features 

and their relevance in all design alternatives before a decision is made. Hence, the introduction 

of design for reconfigurability and functionality as design features have been able to identify the 

optimal design of the RAF using the synthetic extent weighted average. In view of this, it can be 

hypothetically stated that introducing design for reconfigurability and functionality for deciding 

on the optimal design of reconfigurable machines will provide improved results particularly when 

a robust multicriteria decision-making model is used for the computational process. However, 

future work is still possible by further analyzing the characteristics of the reconfigurable 

manufacturing principle into several sub-features such that the characteristics become a design 

feature. Also, a method that needs to simplify the rigorous computation of the fuzzified synthetic 

extent weighted average proposed in this study, for just-in-time determination of the optimal 

design concept still need to be explored.  
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