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1|Introduction    

Handwritten texts have held a special significance in human relations, and the writer verification of a written 

text has always been considered a biometric authentication method [1]. Due to the fact that each person's 

handwriting has unique and measurable traits that distinguish the writer, the verification process can be done 

  International Journal of Research in Industrial Engineering 

www.riejournal.com 

         Int. J. Res. Ind. Eng. Vol. 13, No. 1 (2024) 88–103. 

Paper Type: Research Paper 

 

Leveraging Deep Feature Learning for Handwriting 

Biometric Authentication 

Parvaneh Afzali1, Abdoreza Rezapour2,* , Ahmad Rezaee Jordehi3 

1 Department of Computer Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran; parvaneh.afzali@iau.ac.ir. 
2 Department of Computer Engineering, Astaneh Ashrafieh Branch, Islamic Azad University, Astaneh Ashrafieh, Iran;   
abdoreza.rezapour@gmail.com. 
3 Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran; ahmad.rezaeejordehi@iau.ac.ir. 
 

Citation: 

 

Received: 11 October 2023 

Revised: 12 December 2023  

Accepted: 01 Januray 2024 

Afzali, P., Rezapour, A., & Rezaee Jordehi, A. (2024). Leveraging deep 

feature learning for handwriting biometric authentication. International 

journal of research in industrial engineering, 13(1), 88-103. 

Abstract 

The authentication of writers through handwritten text stands as a biometric technique with considerable practical 

importance in the field of document forensics and literary history. The verification process involves a meticulous 

examination of the questioned handwriting in comparison to the genuine handwriting of a known writer, aiming to 

determine whether a shared authorship exists. In real-world scenarios, writer verification based on the handwritten 

text presents more challenges compared to signatures. Signatures typically consist of fixed designs chosen by signers, 

whereas textual content can vary and encompass a diverse set of letters, numbers, and punctuation marks. Moreover, 

verifying a writer based on limited handwritten texts, such as a single word, is recognized as one of authentication's 

open and challenging aspects. In this paper, we propose a Customized Siamese Convolutional Neural Network 

(CSCNN) for offline writer verification based on handwritten words. Additionally, a combined loss function is 

employed to achieve more accurate discrimination between the handwriting styles of different writers. The designed 

model is trained with pairs of images, each comprising one authentic and one questioned handwritten word. The 

effectiveness of the proposed model is substantiated through experimental results obtained from two well-known 

datasets in both English and Arabic, IAM and IFN/ENIT. These results underscore the efficiency and performance 

of our model across diverse linguistic contexts.  
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[2]. The writer verification involves the task of determining whether two handwritten texts belong to the same 

writer [3]. Based on the methods of handwritten data collection, two approaches are proposed in the writer 

verification systems: online and offline. A digital device collects the handwriting samples in the online 

approach. Therefore, various dynamic features such as the writing speed and the pen pressure level can be 

accessible. However, in the offline approach, no temporal and dynamic data about the handwriting is available, 

and only the scanned image of the written text can be used [3]. However, because it is impossible to collect 

dynamic information in the analysis of historical documents or some forensic documents, the offline 

approach is vastly applicable [4]. Handwriting-based authentication systems can also be divided into text-

dependent and text-independent categories. In the text-dependent group, the text of the training data and the 

test data must be identical, but there is no limit on textual content in the text-independent group [5]. The 

writer verification is a significant topic in computer vision, and many verification methods have been 

proposed; nevertheless, there are still some open challenges. For instance, most proposed verification 

methods are ineffective for writer verification based on a single handwritten word rather than multiple 

handwriting lines. 

In this paper, a new offline text-independent framework is proposed to verify the writer based on handwriting. 

In the proposed approach using the Siamese network, a pair of images is entered into two identical 

subnetworks, and the obtained feature vectors are used to detect the similarity between the original and the 

questioned handwriting images. 

The significant contributions of this study can be summarized as follows: 

I. An efficient writer verification framework is proposed to extract discriminative characteristics based on 

handwritten word images. 

II. As the backbone of the proposed Siamese network, a customized Convolutional Neural Network (CNN) 

model is designed for the subnetworks. 

III. A combined loss function that incorporates both contrastive loss and cross-entropy loss is utilized to 

enhance the accuracy in discriminating between the handwriting styles of different writers. This approach 

allows us to simultaneously leverage the strengths of these two loss functions for more effective 

discrimination. 

IV. The proposed approach is tested on two well-known English and Arabic handwriting datasets, IAM and 

IFN/ENIT, to demonstrate its generalizability to different languages and handwriting styles. 

The rest of this paper is organized as follows. Section 2 includes a brief overview of the related research. The 

description of the suggested method is provided in the Section 3. Section 4 is dedicated to describing the 

datasets used to evaluate the performance of the proposed verification model, as well as the results and 

discussion. Finally, Section 5 concludes the paper. 

2|Literature Review 

In this section, some state-of-the-art writer verification approaches are reviewed. Various methods have been 

proposed to verify the writer using machine learning and deep learning techniques, but most of these studies 

are focused on signatures, not handwriting.  

Yilmaz et al. [6] applied several descriptors and a concatenation of classifiers to use the local signature features 

and the overall shape of the signature. In [7], a writer verification approach is proposed by examining a unique 

fragment of the handwritten word and using the Levenshtein edit distance. The proposed approach was tested 

on a part of the IAM dataset including 100 authors, and 87% accuracy was achieved.  

In [8], a CNN was applied to extract the features of the signature samples. The proposed model was writer-

dependent, meaning that a separate training set was assigned to each writer. Dey et al. [9] proposed a structure 

named SigNet, which was based on the Siamese network and received pairs of signature images to verify the 

signature. 
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Jang et al. [10] presented an approach based on the modified Hausdorff distance and the geometric features 

to verify the writer from Korean texts. In this method, the RGB images were converted into grey images, and 

the images were separated from the background with a binarization threshold. Then, the noises were detected 

and removed. Next, the images were created using the narrowing algorithm. The corners, endings, and 

intersection points were detected, and the segments between these points were removed. Finally, the distance 

criterion was determined without normalization and with normalization. The error rate was 37% without 

normalization and 36% with normalization.  

Adak et al. [11] proposed an offline writer verification approach for Bengali scripts using hybrid features. In 

this method, the probability distribution function was first used to extract the handcrafted features. Then, 

these features were combined with the features automatically obtained from the CNNs. Finally, the combined 

features were applied as the input of the Siamese network. The proposed approach was evaluated using a 

dataset of 100 authors with 300 pages of Bengali manuscripts. Another hybrid deep method is proposed by 

Shaikh et al. for the handwriting verification of Shaikh et al. [1]. In this research, the engineered features were 

extracted using SIFT and GSC methods and combined with extracted features using CNN. In order to 

evaluate the proposed model, only the most frequent word "and" extracted from the CEDAR dataset, which 

contains 15518 words from 1567 authors, was used. Although the feature extractions using SIFT and GSC 

complement the deep networks, according to the results, the manual feature extraction process is very time-

consuming, and 70% of the learning time is spent on this task. Using a combination of SIFT features and the 

deep Siamese network, the training accuracy of 99% and the test accuracy of 63% were achieved, indicating 

overfitting in the system.  

Calik et al. [3] provided a new structure based on CNN for signature recognition on large-scale datasets. In 

the proposed structure, the nearest neighbor algorithm was also used to classify the extracted feature vectors 

of the dense layers. The evaluations were performed on GPDS, MCYT, and CEDAR dataset samples. 

Maergner et al. [12] proposed a combination of two structural and statistical classifiers for signature 

verification. A triplet Siamese-based architecture, including three subnetworks sharing the same weights, was 

used as a statistical model. In the training phase, a triplet of signatures (the anchor image, the positive image, 

and the negative image) was fed to the model. Also, the graph edit distance was employed in the structural 

classifier. Parcham et al. [4] provided a new model with high performance for signature verification. In this 

model, a hybrid architecture named CBCapsNet, including the customized CNN and capsule neural network 

models, was presented to improve the model's capability in feature extraction and increase accuracy. The 

researchers tried to use the benefits of the convolutional networks to identify and extract the features. They 

also attempted to lessen the weakness of the CNNs in distinguishing the spatial changes and variations in 

image properties by utilizing the capsule neural networks. 

Gosh [13] proposed a deep model using recurrent neural networks for signature verification and recognition. 

In this research, several features of the signature images were extracted, and the obtained feature vectors were 

classified. The method was evaluated on six public databases. Furthermore, a comparison was made with the 

CNNs, and a better result was achieved than with these networks. In [14], researchers proposed a new method 

of using generative adversarial networks as a data augmentation approach in training sets to solve the problem 

of limited data in the signature verification problem. The researchers evaluated their proposed method using 

two popular datasets GPDS and MCYT and four pre-trained CNN models, and acceptable results were 

obtained.  

Aubin et al. [15] presented a new method using small segments of the graphemes. Two texture descriptors 

were used on five ordinary graphemes of a collected dataset of 3000 sample images written by 50 people. 

Using the support vector machine as a classifier, this research reported an average verification accuracy of 

97%. Khan et al. [16] provided an approach to verify the writer based on partly damaged Arabic documents. 

The authors attempted to improve the verification performance by omitting the ineffective characters and 

focusing on the character shapes. By evaluating a collected Arabic dataset using a CNN, an accuracy of 95% 

was obtained.  
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The review of related works reveals a scarcity of studies in the realm of writer verification centered on 

handwriting, with the majority concentrating on signature-based approaches. Signatures, typically fixed 

designs chosen by the writer, offer a limited scope. However, the realm of writer verification through 

handwriting introduces a greater complexity, given the variability in textual content, encompassing a diverse 

array of letters, numbers, and various symbols. This intricacy makes writing verification based on handwriting 

more challenging than signature-based methods. Unlike signature-based approaches, which focus on a fixed 

design, our study delves into the dynamic nature of handwriting, specifically concentrating on single 

handwritten words.  

Furthermore, our approach stands out by removing the dependence on language-specific graphemes. Our 

method avoids this limitation, unlike many existing methodologies in previous research, which focus on 

extracting features tied to particular graphemes. This departure enhances the generalizability of our approach, 

making it more versatile and applicable across diverse languages. 

In light of these observations, our current study assumes a pivotal role in bridging this research gap. By 

presenting an innovative approach to writer verification based on a single handwritten word independent of 

language-specific graphemes, we aim to contribute to a more applicable and robust methodology in the realm 

of handwriting-based writer verification. 

3|The Proposed Customized Siamese Convolutional Neural Network 

Methodology 

In this section, we present the architecture of the proposed methodology for writer verification. This 

architecture consists of a customized convolutional Siamese network (cSCNN), including two convolutional 

subnetworks with a shared architecture and equal weights. 

CNNs are a special class of deep neural networks widely used in various machine vision tasks [17]. CNNs 

include several important layers, such as convolutional, pooling, and Fully Connected (FC)  layers [18]. As the 

core block of the network, the convolutional layers can have different kernel sizes. The lower convolutional 

layers extract low-level features like color and edge, while high-level features like lines and objects are extracted 

in the upper layers. After the convolutional layer, the pooling layer performs the down-sampling of the 

outputs. Based on the extracted features, the prediction can be done in the FC layer [19]. 

The Siamese neural network includes two subnetworks with identical configurations as a specific neural 

network architecture. The parameters update is reflected in both branches and is connected through a loss 

function. This function calculates a similarity measure between the feature vectors obtained from two 

subnetworks [20]. This network has achieved acceptable results in various challenging issues of machine 

vision, such as face verification and signature verification [9]. 

The detailed information about the architecture of the proposed cSCNN is illustrated in Fig. 1. The 

subnetworks of our cSCNN utilize a proposed deep architecture consisting of five convolutional blocks 

(Conv-Block). Two convolutional layers are embedded in each Conv-Block. A Batch Normalization (BN) 

layer is applied after each convolutional layer to extract the most salient features, discard less significant details, 

improve the generalization, and aid in faster and more effective training. Applying dropout after BN in the 

first three Conv-Blocks is attempted to enhance the generalizability and decrease the risk of overfitting. Each 

conv-Block is ended with a max pooling layer with the size of 2×2 and stride 2 to capture the most important 

handwriting information while discarding the redundant details. The pair of handwriting images (size: 

80×180) is fed as the input to the customized subnetworks. In all convolutional layers, the convolution 

operation is performed by sliding the filters of size 3×3 over the input handwriting images. The stride and 

the padding are also set to 1. To enhance the non-linear transformations in the feature learning process [21], 

we use the interval type 2 fuzzy unit proposed in [22] as the activation function. The high-level handwriting 

features can be captured by increasing the number of filters from 32 to 512 while going deeper into the Conv-

Blocks and combining the low-level features. Following the convolutional blocks, Global Average 
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Aggregation (GAP), aiming to reduce the number of parameters and the complexity of the model, and the 

flattened layer, converting the multi-dimensional dimension into a one-dimensional vector, finalize the 

architecture of the customized Siamese subnetworks. The architecture configuration details of each 

subnetwork are also presented in Table 1. Moreover, Fig. 2 illustrates the pseudocode of the proposed writer 

verification framework. 

 

Fig. 1. The custom architecture used in cSCNN. 

 

A concatenation layer is then applied to the two output vectors of the deep subnetworks. Afterward, the 

concatenated vector is passed through the three FC layers. The output of the last FC layer determines whether 

the verification result is Genuine or Forged, meaning that both images of the pair are written by the same 

writer (Similar) or different writers (Dissimilar), respectively. 

Table 1. The architecture configuration details of the identical subnetworks. 

 

 

 

 

 

 

 

 

 

Layers Number of Kernels Kernel Size Output Size 

2 × Convolution2D+BN 32 3×3 80×180×32 
Max pooling2D   40×90×32 
2 × Convolution2D+BN 64 3×3 40×90×64 
Max pooling2D   20×45×64 
2 × Convolution2D+BN 128 3×3 20×45×128 
Max pooling2D   10×22×128 
2 × Convolution2D+BN 256 3×3 10×22×256 
Max pooling2D   5×11×256 
2 × Convolution2D+BN 512 3×3 5×11×512 
Max pooling2D   3×5×512 
Global Average Pooling   1×1×512 
Flatten   512 
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Fig. 2. The pseudocode of the proposed writer verification framework. 

 

3.1 |Training and Evaluating of the Proposed Model for Writer Verification 

The training process of the proposed model for writer verification requires the creation of image pairs after 

preprocessing. Thus, for a pair of images, if two handwritten images belong to the same writer, it is a positive 

pair; otherwise, it is considered a negative pair. The proposed deep Siamese network is trained on these 

positive and negative pairs. During the training phase, the proposed model extracts embeddings from each 

image in the input pair. Then, these embeddings are used to calculate the loss. By iteratively adjusting the 

parameters based on the calculated loss, the model learns to produce embeddings that effectively discriminate 

between genuine and questioned handwriting. A pair of two handwriting images is presented as an input 

element to test the model. One image belongs to a specific writer, and the other is the questioned handwriting 

that needs to be verified. An overview of the training and testing of the proposed model for writer verification 

is shown in Fig. 3. 
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Fig. 3. The flow diagram of cSCNN for writer verification. 

 

3.1.1|The proposed combined loss 

Loss function is essential for training neural networks or machine learning models [23]. This function provides 

evidence of estimation errors in the training phase and directly affects the learning performance [24]. Each 

loss function can include different aspects of learning objectives.  

In this study, a combined loss function is provided to enhance the training process and model performance. 

During the training of the proposed model, two vectors obtained from the Flatten layers in two Siamese 

subnetworks are used to apply the contrastive loss function [25], and the cross-entropy loss function [26] is 

also applied to the output of the last FC layer. As the components of the proposed combined function, the 

cross-entropy loss function focuses on Binary classification accuracy, and the Contrastive loss function 

emphasizes the accurate separation and discrimination between similar and dissimilar handwriting samples. 

Contrastive loss 

The contrastive loss function is widely employed for comparing two samples. The cSCNN leverages this loss 

function to highlight significant features within the feature space, bringing similar samples (written by the 

same writer) closer together while pushing dissimilar samples (written by different writers) farther apart. This 

loss function is applied to the feature vectors obtained from two siamese subnetworks. 

The Contrastive loss is obtained as follows: 

where Di denotes the Euclidean distance between two feature representations of the pair of handwritten 

images. A pair of input images is positive/similar when the same writer writes yi=1 and the two handwriting 

images; otherwise, it is considered a negative/dissimilar pair for yi=0. The margin determines the desired 

separation threshold between similar and dissimilar samples. 

Cross-entropy loss 

The cross-entropy loss function is one of the most beneficial and widely used loss functions in neural 

networks. The measured prediction is a number between zero and one. The main goal is to achieve a model 

with a log loss around zero [24]. 

The cross-entropy loss is formulated as follows: 

LC =
1

2N
 ∑ (yiDi

2 + (1 −  yi) max(0, margin −  Di)
2)N

i=1 , (1) 
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where the similarity_label is either 0 or 1, indicating whether the pair is dissimilar (0) or similar (1). The 

predicted_similarity is the network output that represents the predicted similarity between the pair of 

handwriting samples, and it is a value between 0 and 1. The 1/N factor is applied to average the loss of overall 

data pairs. This averaging helps ensure that each pair of handwriting data equally influences the overall loss 

calculation. 

In the suggested approach, cross-entropy loss is applied to the outputs of the last FC layer and allows the 

model to be optimized for accurate classification. 

The combined loss formula 

The combined loss is formulated as the linear combination of the employed loss functions Eq. (3) and applied 

to train the proposed network structure by optimizing all the loss functions with back-propagation at the 

same time. 

where α and β are the weights to balance the contributions of each loss function based on the desired trade-

off. 

4|Experiments and Results 

This section details the datasets and experiments conducted to evaluate the proposed method. 

4.1|Data 

The well-known datasets of IAM [27] and IFN/ENIT [28] are employed to train and evaluate the proposed 

model. 

4.1.1|The IAM dataset 

The IAM dataset, renowned for its collection of English handwriting samples, encompasses 1539 documents 

originating from 657 unique writers. This dataset is meticulously organized, featuring handwriting images 

across various document elements, including pages, lines, and words. Within this rich dataset, a total of 1539 

pages, 5685 sentences, 13353 text lines, and 115320 labeled words are available [27]. For our study, we utilized 

the handwriting images of 130 writers from this dataset to generate both similar and dissimilar handwriting 

samples. Refer to Fig. 4 for visual representations of sample images from this dataset. 

Fig. 4. Some instances of handwritten words from the IAM dataset. 

 

LCE =  −
1

N
 ∑ (similarity_label ∗  log(N

n=1 predicted_similarity) + (1 −  similarity_label) ∗

 log(1 − predicted_similarity))], 
(2) 

Combined Loss =  αLC + βLCE, (3) 
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4.1.2 | The IFN/ENIT dataset 

The IFN/ENIT dataset, a comprehensive collection of Arabic handwriting, encompasses 26,459 handwritten 

names representing Tunisian cities or villages, contributed by 411 participants [28]. To construct a diverse set 

of handwriting samples, we specifically leveraged the handwriting images of 120 writers from this extensive 

dataset. For a visual representation, please refer to Fig. 5, which showcases a selection of examples featuring 

handwritten words extracted from the IFN/ENIT dataset. This dataset provides a rich source of Arabic 

handwriting and facilitates the creation of varied samples for our study. 

Fig. 5. Some exemplars of handwritten words from the IFN/ENIT dataset. 

 

4.1.3|Preprocessing and preparing the pair of input images 

Preprocessing is crucial for effective feature extraction and precise analysis in the field of writer verification 

using handwriting images. Thus, as the initial step, we converted the collected samples into grayscale images. 

The handwritten word images within the datasets vary in size, requiring standardization for consistent model 

input. To achieve this, we meticulously cropped the images into uniform 80×180 patches to ensure that the 

model receives standardized input across all samples. Moreover, we normalized pixel values to foster an 

environment conducive to effective model learning and performance optimization. 

In the realm of data augmentation, we employed a comprehensive set of transformations to enhance dataset 

variability. Rotation, with a variability of 0.8, was introduced to simulate diverse perspectives. Zooming, within 

a range of 0.1, and brightness adjustments spanning from 0.4 to 0.7 were applied to augment the dataset 

further, providing the model with a more diverse and robust set of samples for training. 

Addressing the creation of pairs for training, positive (similar) pairs were meticulously curated by selecting 

two samples from the handwriting of a single writer. Similarly, negative (dissimilar) pairs were formed by 

pairing two samples from different writers. Importantly, to counteract potential biases and ensure a balanced 

dataset, an equal number of positive and negative samples were generated for each writer. 

Then, turning to the data-splitting strategy, 70% of the word samples were allocated for training, providing 

the model with a substantial foundation for learning. A reserved 10% was set aside for validation and fine-

tuning during the training process, aiding in parameter adjustments and enhancing model generalization. The 

final 20% was dedicated to evaluating the model's performance on unseen data during the testing phase. The 

distribution of training and testing data for the two datasets is detailed in Table 2. 

Table 2. The data splitting on IAM and IFN/ENIT datasets. 

Dataset # Pair 
Images 

# Training Data (70%) # Validation Data (10%) # Testing Data (20%) 

Similar Dissimilar Similar Dissimilar Similar Dissimilar 

IAM 2600 910 910 130 130 260 260 
IFN/ENIT 2040 714 714 102 102 204 204 
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4.2|Hyperparameters Setting 

Fine-tuning the hyperparameters, as detailed in Table 3, included setting the learning rate to 0.0001 and the 

batch size to 64. A dynamic adjustment strategy was applied to address potential learning stagnation, reducing 

the learning rate by 0.2 whenever stagnation persisted for five consecutive epochs.  

The model was trained for 70 epochs, optimizing parameters using the Adam optimizer and the Binary cross-

entropy loss function. The experiments were conducted on an Nvidia GEFORCE GTX 1070 with 8 GB 

RAM, ensuring computational efficiency and robust model training. 

 Table 3. List of training hyperparameters. 

 

 

 

 

 

4.3 | Evaluation Metrics 

In our study, the chosen criteria to evaluate the verification performance are as follows: 

I. Accuracy (Acc): the standard metric of accuracy is used to evaluate how well the proposed approach can 

verify the writer of the handwritten text and identify the genuine/similar and forged/dissimilar handwriting. 

where True Positives (TP) is the number of samples correctly predicted as genuine/similar handwriting. True 

Negatives (TN) is the number of samples correctly predicted as forged/dissimilar handwriting. False 

Positives (FP) is the number of samples incorrectly predicted as genuine/similar handwriting. False Negatives 

(FN) is the number of samples incorrectly predicted as negative forged/dissimilar handwriting. 

II. False Acceptance Rate (FAR): This metric is commonly used in verification systems and refers to the 

percentage of forged/dissimilar handwriting pairs classified as genuine/similar. A lower FAR demonstrates 

that the biometric system is more reliable and mistakenly accepts fewer forged inputs. 

III. False Rejection Rate (FRR): this is another common biometric performance metric used in verification 

systems and refers to the percentage of genuine/similar handwriting pairs classified as forged/dissimilar. A 

lower FRR indicates that the biometric system mistakenly rejects fewer genuine handwritings. 

4.4|Evaluation Results of the Proposed Writer Verification Architecture 

The effectiveness of the cSCNN architecture is assessed using IAM and IFN/ENIT datasets. The evaluation 

outcomes, measured in terms of accuracy, FAR, and FRR, are presented in Table 4.  

Table 4. The performance results of the cSCNN model on IAM and IFN/ENIT datasets. 

 

 

 

Moreover, Fig. 6 illustrates the performance of the proposed model during both the training and test phases. 

 

Hyperparameters Value 

Initial learning rate 0.0001 
Batch size 64 
Dropout 0.3 
Optimizer Adam 
Loss function Binary cross-entropy 
Epoch 70 

Acc =  (TP +  TN) / (TP +  TN +  FP + FN), (4) 

FAR =  FP / (TN +  FP). (5) 

FRR =  FN / (TP + FN). (6) 

Dataset Language Train 
accuracy (%) 

Validation 
accuracy (%) 

Test 
accuracy (%) 

FAR  
(%) 

FRR  
(%) 

IAM English 99.61 98.65 98.46 1.92 1.15 
IFN/ENIT Arabic 99.50 98.77 98.52 1.47 1.47 
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a. 

b. 

Fig. 6. Accuracy and loss plots of the proposed cSCNN model on; a. IAM and b. IFN/ENIT. 

a. 

b. 

Fig. 7. The confusion matrices of cSCNN on; a. IAM and b. IFN/ENIT. 
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In addition, the confusion matrices of the cSCNN model on two datasets are displayed in Fig. 7. 

4.5|The Impact of Different Loss Functions 

The next experiment evaluated the influence of using the proposed combined loss function compared to a 

single cross-entropy loss function. ROC curves were used to illustrate the comparison results. As shown in 

Fig. 8, applying the combined loss function to the proposed model, a higher area under the curve was obtained 

on both IAM and IFN/ENIT.  

a. 

b. 

Fig. 8. ROC curve of the verification model with proposed 

combined loss function and cross-entropy loss function 

on; a. IAM and b. IFN/ENIT. 

 

4.6|The Impact of Different Numbers of Training Pairs 

In another experiment, the effect of the number of training pairs per writer on the performance of the 

designed model is assessed. We assessed the verification performance by utilizing varying similar and 

dissimilar pairs (3 to 7) for each writer in the IAM dataset. As seen in Table 5, the verification accuracy is 

impacted by the increase in the number of training pairs. Also, a substantial improvement is observed when 

5 training pairs are utilized for each author. 
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Table 5. The effect of different numbers of the training pairs on the 

verification performance. 

 

 

 

 

 

4.7|The Comparison with the Related Writer Verification Methods and 

Discussion 

Table 6 compares the accuracy of the proposed method with other writer verification approaches. In 

comparison to the study by Bensefia et al. [7], which sought to verify writers by analyzing the constituent 

graphemes of a handwriting word sample, our research demonstrates a notable improvement in accuracy. 

Specifically, our proposed method achieved a significant 11.46% enhancement over [7] when evaluated on 

the IAM dataset. This improvement underscores the efficacy and superiority of our cSCNN model in 

comparison to the approach presented by Bensefia et al. 

Aubin et al.'s method [15], while achieving 97% accuracy on a specific dataset, is confined by its reliance on 

only five typical graphemes. This limitation raises concerns about the model's generalizability. In contrast, our 

proposed cSCNN is designed to offer greater versatility by not being restricted to a small set of graphemes. 

Our comprehensive evaluation of distinct datasets emphasizes the importance of considering model 

performance across diverse datasets to ensure reliability and robustness. 

Similarly, the approach outlined by Khan et al. [16], which focuses on specific shapes of Arabic alphabets, 

presents limitations in its applicability to other languages and writing systems. Its reliance on predefined 

shapes hinders adaptability to different writing styles and scripts. In contrast, our method prioritizes feature 

extraction and generalization, offering a more flexible and adaptable solution for writer verification. By not 

solely depending on predefined shapes, our approach becomes applicable to a broader range of languages and 

handwriting styles. 

Our novel writer verification method focuses specifically on handwritten words, addressing the observed 

limitations in previous approaches. Through extensive experimentation and evaluation of datasets 

representing both English and Arabic languages, our cSCNN showcased its ability to extract distinctive 

features effectively, thereby enabling reliable writer verification. The promising results obtained on datasets 

with different languages highlight the potential for our approach to be widely applicable and adaptable in real-

world scenarios. 

Table 6. The performance comparison with the related writer verification methods. 

 

 

 

 

 

5|Conclusion 

Various challenges are involved in analyzing handwritten text for writer verification, such as extracting more 

informative and differentiating features, achieving higher performance in real-world applications, and 

The number of training pairs 
(similar, dissimilar) 

Train accuracy (%) Test accuracy (%) 

(3,3) 92.50 89.53 
(4,4) 95.82 93.74 
(5,5) 99.32 98.15 
(6,6) 99.47 98.41 
(7,7) 99.60 98.44 

Study Method Dataset Accuracy (%) 

Bensefia et al. [7] Levenshtein edit distance IAM (English) 87.00 
Aubin et al. [15] Two texture descriptors and 

support vector machine 
Collected English 
dataset 

97.00 

Khan et al. [16] CNN Collected Arabic dataset 95.00 
Present study cSCNN IAM (English) 98.46 

IFN/ENIT (Arabic) 98.52 
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enabling writer authentication based on a small amount of handwritten text. In response to these challenges, 

this paper introduced an effective method for improved writer verification from single handwritten words. 

Our proposed deep architecture is based on a Siamese network with a custom CNN model as the backbone 

of the sub-networks. This design aims to enhance handwriting verification performance by incorporating 

specially designed convolution blocks in each Siamese branch. The model is trained using a composite loss 

function, including contrastive and cross-entropy losses. This integration of multiple loss functions facilitates 

efficient extraction of handwriting characteristics, enhancing the model's ability to capture fundamental 

patterns and, consequently, improving overall performance compared to using a single loss function. 

Notably, our model underwent evaluation on two diverse datasets representing different languages, English 

and Arabic, with the added distinction that one dataset is written right-to-left and the other left-to-right. The 

experimental results underscored the versatility and efficacy of our proposed model in handling various 

handwriting styles and languages, including the directional nature of the script. 

In addition, our innovative approach diverges from the reliance on language-specific graphemes, setting it 

apart from numerous existing methodologies in prior research that concentrate on extracting features 

associated with specific graphemes. This deviation eliminates a potential limitation and significantly bolsters 

the generalizability of our method, rendering it more adaptable and applicable across a wide spectrum of 

languages. 

Looking ahead, the potential of our proposed framework for effectively detecting forged signatures and 

identifying writers can be explored in future works. Additionally, we plan to enhance the model's capabilities 

by training it on a dataset of cursive English handwritten samples, presenting unique challenges due to their 

intricate connections. 

In summary, our study contributes a novel and robust approach to writer verification from single handwritten 

words, demonstrating versatility across languages and superior performance compared to existing methods. 

The consideration of different directional datasets and the departure from language-specific graphemes add 

additional layers of complexity and relevance to the evaluation, highlighting the adaptability of our proposed 

model to diverse handwriting styles, scripts, and languages. The potential applications for detecting forged 

signatures and handling cursive English handwriting present exciting avenues for future exploration and 

expansion of our proposed framework. 
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